AMSI 2013: MEASURE THEORY Handout 6

L^p Spaces

Marty Ross martinirossi@gmail.com

January 22, 2013

Suppose μ is a measure on X. We define

 $L^{1}(\mu) = \{ f : f \text{ is } \mu \text{-summable} \},\$

writing L^1 , if the context is clear. The superscript 1 suggests, correctly, that there will be collections L^p for other $p \in \mathbb{R}^*$. But let us first concentrate upon the collection of summable functions. We first note that L^1 is closed under addition (by Theorem 21) and scalar multiplication, and thus L^1 is a vector space. Also, if a function f is in L^1 then so is |f| (immediately, from the definition of $\int f$). So, we can define a "norm"

$$\|f\|_1 = \int |f| \,\mathrm{d}\mu.$$

We are interested here in $f \in L^1$, but note that $||f||_1$ is well-defined, possibly ∞ , for any measurable f.

In fact, $\|\cdot\|_1$ is *not* in general a norm. Clearly, $\|cf\|_1 = |c| \cdot \|f\|_1$ for $c \in \mathbb{R}$. And, the triangle inequality follows from the triangle inequality on \mathbb{R} , together with monotonicity of the integral:

$$||f+g||_1 = \int |f+g| \leq \int |f| + |g| = \int |f| + \int |g| = ||f||_1 + ||g||_1$$

However, we may not have positivity: for many measures it is possible that $||f||_1 = 0$ even if $f \neq 0$ (i.e. even if f is not the zero function). $|| \cdot ||_1$ on L^1 is what is called a *seminorm*.

So, technically, we don't have a norm on L^1 , but the seminormness of $\|\cdot\|_1$ is pretty trivial: if $\|f\|_1 = 0$ then f must be 0 almost everywhere. To cope with the lack of positivity, we recall the equivalence relation on measurable functions:

$$f \equiv g \quad \iff \quad f = g \text{ a.e.}.$$

Note that

(*)
$$f \equiv g \implies ||f||_1 = ||g||_1,$$

and thus we can define $\|\cdot\|_1$ on the set of equivalence classes of L^1 . Writing \hat{f} for the equivalence class of $f \in L^1$, we then define

$$||f||_1 = ||f||_1,$$

with (*) guaranteeing that the definition is independent of the class representative.

It is easy to check that we do now indeed have a norm.¹ Technically, we should define and work with this new space of equivalence classes. However, the general consensus is that life is too short for that. So, we'll stick to L^1 , and refer to $\|\cdot\|_1$ as a norm on L^1 , keeping the equivalences in the back of our minds.²

We can now think of L^1 as a normed space. Our main theorem here, Theorem 31, is that L^1 is a *Banach space*: L^1 is *complete* with respect to the associated metric (in truth, *pseudometric*)

$$d(f,g) = ||f - g||_1.$$

Before proving the completeness of L^1 , we first consider the L^p spaces for other p. As well as the norm we have defined above, it is very natural to consider the "inner product"

$$\langle f,g\rangle = \int fg \,\mathrm{d}\mu \,.$$

Modulo the same positivity considerations, this is indeed an inner product, but an inner product on what space? Note that even if f and g are summable, $\langle f, g \rangle$ may be infinite or undefined: for example, let $\mu = \mathscr{L}$ on (0,1) and take $f(x) = g(x) = \frac{1}{\sqrt{x}}$. However, we do have

$$|fg| \leq \frac{1}{2}f^2 + \frac{1}{2}g^2$$
.

Thus, if both f^2 and g^2 are summable then $\langle f, g \rangle$ will be well-defined and finite. This leads us to define

$$L^{2}(\mu) = \left\{ f : \int f^{2} d\mu < \infty \right\} \,.$$

¹This is a standard construction, which works for any seminorm.

²It shouldn't be imagined that the representative we choose is always unimportant. For example, the Weird function $W = \chi_{\mathbb{Q}\cap[0,1]}$ from Handout 1 was introduced exactly because of its failure to be Riemann integrable. However, W is equivalent to the zero function, which is trivially Riemann integrable. The moral is, within the confines of measure theory our choice of representative is unimportant; but, as soon as we wish to consider non-measure-theoretic properties, we may need to specify the representative function.

Notice that L^2 is closed under addition, and is thus a vector space, since

$$(f+g)^2 = f^2 + 2fg + g^2 \leq 2f^2 + 2g^2$$
.

Then $\langle \cdot, \cdot \rangle$ is an inner product on the space L^2 , with the associated (semi)norm

$$||f||_2 = \sqrt{\langle f, f \rangle} = \left(\int |f|^2\right)^{\frac{1}{2}}.$$

Note that $||f||_2$ is well-defined for any measurable f. In Theorem 31 we prove that L^2 is complete, and thus that L^2 is a *Hilbert space*.

In accord with L^1 and L^2 , we now consider $1 \leq p < \infty$. We define

$$L^{p}(\mu) = \left\{ f : \int |f|^{p} \,\mathrm{d}\mu < \infty \right\} \qquad 1 \leqslant p < \infty$$

and if $f \in L^p$, we say that f is p-summable. Again, L^p is a vector space, since

$$|f+g|^p \leq (2\max(|f|,|g|))^p = 2^p \max(|f|^p,|g|^p) \leq 2^p (|f|^p + |g|^p)$$
.

We define the associated "seminorm":

$$||f||_p = \left(\int |f|^p\right)^{\frac{1}{p}} \qquad f \text{ measurable.}$$

The definition is consistent with the cases p = 1 and p = 2, but it is not at all obvious that $\|\cdot\|_p$ defines a seminorm. It is easy to see that $\|cf\|_p = |c| \cdot \|f\|_p$ for $c \in \mathbb{R}$, but the triangle inequality takes significantly more work: see Theorem 30.

Before getting down to work, there is one more L^p space to define, for $p = \infty$. Here the idea is to capture the space of bounded measurable functions, and to give them a *sup* norm. However, since we want null sets to be irrelevant, the straight-forward definitions are not appropriate. Instead, for $f: X \to \mathbb{R}^*$, we consider those $M \in \mathbb{R}^*$ for which

$$\mu(f^{-1}((M,\infty])) = 0$$
.

Of course, $M = \infty$ satisfies this condition, and is easy to check that the set of such M forms a closed interval of \mathbb{R}^* . Thus we can define the the *essential supremum* of f to be the smallest such M:

(†)
$$\operatorname{ess\,sup} f = \min\{M \in \mathbb{R}^* : \mu\left(f^{-1}\left((M,\infty]\right)\right) = 0\}$$

Note that the use of open intervals permits us to write *min* rather than *inf* in the definition.

We now define

$$\begin{cases} \|f\|_{\infty} = \operatorname{ess\,sup} |f| \,,\\ \\ L^{\infty}(\mu) = \{f : f \text{ is } \mu \text{-measurable and } \|f\|_{\infty} < \infty \} \,. \end{cases}$$

SO Note that if $f: \mathbb{R}^n \to \mathbb{R}$ is continuous then, with respect to Lebesgue measure,

$$||f||_{\infty} = \operatorname{ess\,sup} |f| = \operatorname{sup} |f| \qquad (\operatorname{wrt} \,\mathscr{L}^n).$$

However, with respect to other measures this may not be the case.

It is easy to see that L^{∞} is a vector space, and that $||cf||_{\infty} = |c| \cdot ||f||_{\infty}$ for $c \in \mathbb{R}$. To prove the triangle inequality, consider $f, g \in L^{\infty}$ and let $M = ||f||_{\infty}$ and $N = ||g||_{\infty}$. Then

$$\begin{split} \{x : |f|(x) + |g|(x) > M + N\} &\subseteq \{x : |f|(x) > M\} \cup \{x : |g|(x) > N\} \\ \implies &\{x : |f(x) + g(x)| > M + N\} \subseteq |f|^{-1} \left((M, \infty] \right) \cup |g|^{-1} \left((N, \infty] \right) \\ \implies &\mu \left((|f + g|)^{-1} ((M + N, \infty]) = 0 \\ \implies &\|f + g\|_{\infty} \leqslant M + N = \|f\|_{\infty} + \|g\|_{\infty} \,. \end{split}$$

It is also easy to check that

$$f \equiv g \implies ||f||_{\infty} = ||g||_{\infty}.$$

Thus $\|\cdot\|_{\infty}$ is a well-defined seminorm on L^{∞} , and $\|\cdot\|$ ignores null sets. And, as for L^p for $1 \leq p < \infty$, as part of Theorem 31 we shall prove that L^{∞} is a Banach space.

Before proving the triangle inequality for L^p , we make a couple of quick observations:

- If $f_j \to f$ uniformly off of a null set, then it easily follows that $||f_j f||_p \to 0$. More generally, with appropriate hypotheses the convergence theorems of Handout 5 can applied to show $||f_j f||_p \to 0$. See the proof of Theorem 31 below.
- Let μ_0 be counting measure on N. Then the spaces $L^p = l^p$ are exactly the well-known sequence spaces.

We now begin the proof of the triangle inequality for general L^p . As part of the proof, we associate L^p and L^q , where

$$\frac{1}{p} + \frac{1}{q} = 1$$

In what follows, we shall always assume that p and q are thus related. Note the particular cases p = q = 2, and $p = 1, q = \infty$.

LEMMA 28 (Young's Inequality): For any $a, b \ge 0$, and $1 < p, q < \infty$, we have

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

with equality iff $a^p = b^q$.

PROOF: Since the function log is concave, the graph of log lies above the straight line connecting the straight-line segment l connecting any two points on the graph. Writing

$$z = (1-t)x + ty \qquad 0 \leqslant t \leqslant 1,$$

for a point between x and y, we thus have

Now set $x = a^p$, $y = b^q$, and $t = \frac{1}{q}$ (implying $1 - t = \frac{1}{p}$). Then

$$\log\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\log\left(a^p\right) + \frac{1}{q}\log\left(b^q\right) = \log(ab).$$

Taking exponentials, and noting exp is increasing, we obtain the desired result. We obtain a strict inequality unless z = x = y, that is unless $a^p = b^q$.

THEOREM 29 (Hölder's Inequality): Suppose μ is a measure on X, and suppose that f and g are measurable functions on X. Then

(†)
$$\int |fg| \,\mathrm{d}\mu \leqslant ||f||_p \cdot ||g||_q \qquad 1 \leqslant p, q \leqslant \infty.$$

In particular, if $f \in L^p$ and $g \in L^q$ then $fg \in L^1$.

We consider $1 < p, q < \infty$ with $0 < ||f||_p, ||g||_q < \infty$, the other cases being trivial. PROOF: Now let

$$\bar{f} = \frac{f}{\|f\|_p} \qquad \bar{g} = \frac{g}{\|g\|_q}$$

Then, by Lemma 28,

$$\int \left| \bar{f}\bar{g} \right| \stackrel{*}{\leqslant} \int \frac{1}{p} |\bar{f}|^p + \frac{1}{q} |\bar{g}|^q = \frac{1}{p \|f\|_p^p} \int |f|^p + \frac{1}{q \|g\|_q^q} \int |g|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

But then clearly $\int \left| \bar{f}\bar{g} \right| = \frac{1}{\|f\|_p \|g\|_q} \int |fg|$, and (†) follows.

REMARKS:

• Suppose $1 < p, q < \infty$ and the RHS of (†) is finite. Then Hölder's Inequality is an equality iff the use of Lemma 28 in the proof at (*) is an equality a.e.. That is, we require

$$\frac{|f|^p}{\|f\|_p^p} = \frac{|g|^q}{\|g\|_q^q} \quad \text{a.e.} \quad$$

Thus, we have equality iff there is a $c \in \mathbb{R}$ such that $|f|^p = c|g|^q$ a.e..

Suppose p = 1, $q = \infty$ and the RHS of (†) is finite. Then Hölder's Inequality is an equality iff $|g| = ||g||_{\infty}$ a.e. on $\{x : f(x) \neq 0\}$. •

•
$$39$$
 Suppose $\mu(X) < \infty$. If f is an integrable function, we define the *average* of f:

$$\int f \,\mathrm{d}\mu = \frac{1}{\mu(X)} \int f \,\mathrm{d}\mu \,.$$

Then a consequence of Hölder's Inequality is

$$1 \leqslant p < r < \infty \implies \left(\oint |f|^p \right)^{\frac{1}{p}} \leqslant \left(\oint |f|^r \right)^{\frac{1}{r}}.$$

In particular, if $\mu(X) = 1$ then $||f||_p \leq ||f||_r$.

•
$$40$$
 In general, if $\mu(X) < \infty$ then

$$(\clubsuit) \qquad \begin{cases} f \in L^r \implies f \in L^p \qquad p \leqslant r \,, \\ \|f\|_{\infty} = \lim_{p \to \infty} \|f\|_p \,. \end{cases}$$

However, if $\mu(X) = \infty$ then neither conclusion of (\clubsuit) is true in general.

We can now give the proof of the triangle inequality on L^p , establishing that $\|\cdot\|_p$ is a (semi)norm on L^p , followed by the proof of the completeness of L^p .

THEOREM 30 (Minkowski's Inequality): Suppose μ is a measure on X, and suppose $f, g \in L^p, 1 \leq p \leq \infty$. Then

(*)
$$||f + g||_p \leq ||f||_p + ||g||_p$$

PROOF: The cases p = 1 and $p = \infty$ have been proved above, so we assume 1 .Then

$$||f+g||_p^p = \int |f+g|^p = \int |f+g||f+g|^{p-1} \leq \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1}.$$

We will apply Hölder's Inequality on each of these integrals. In preparation, we first calculate

$$\| |f+g|^{p-1} \|_q = \left(\int |f+g|^{q(p-1)} \right)^{\frac{1}{q}} = \left(\int |f+g|^p \right)^{1-\frac{1}{p}} = \|f+g\|_p^{p-1},$$

where we have used the equation $\frac{1}{p} + \frac{1}{q} = 1$ twice in the second last step. So, by Hölder's Inequality,

$$|f+g||_p^p \leq ||f||_p \cdot ||f+g||_p^{p-1} + ||g||_p \cdot ||f+g||_p^{p-1}.$$

If $||f + g||_p = 0$ then (*) is trivial. Otherwise, we divide through by $||f + g||^{p-1}$ to give the desired result.

THEOREM 31 (Riesz-Fischer Theorem): Suppose μ is a measure on X, and suppose $1 \leq p \leq \infty$. Then $L^p(\mu)$ is complete with respect to the norm $\|\cdot\|_p$. Thus each L^p is a Banach space, and L^2 is a Hilbert space.

PROOF: 41 The case $p = \infty$ is easier, and is left as an exercise.

We use the standard characterisation, that a normed space is complete if and only if an absolutely convergent sequence is convergent. So, we consider a sequence $\{f_j\}$ in L^p for which $\sum ||f_j||_p = S < \infty$. Then we want to show $\sum f_j$ converges in L^p to some function f.

By the triangle inequality,

$$\left\|\sum_{j=1}^n |f_j|\right\|_p \leqslant \sum_{j=1}^n \|f_j\|_p \leqslant S < \infty.$$

Then, by Monotone Convergence Theorem (Theorem 19),

$$\int \left(\sum_{j=1}^{\infty} |f_j|\right)^p d\mu = \lim_{n \to \infty} \int \left(\sum_{j=1}^n |f_j|\right)^p d\mu \leqslant S^p < \infty.$$

It follows that $g = \sum_{j=1}^{\infty} |f_j| \in L^p$, and in particular that g is finite a.e.. Then, since any absolutely convergent series of real numbers is convergent, for a.e. x we can define pointwise

$$f(x) = \sum_{j=1}^{\infty} f_j(x)$$

It is clear that $|f| \leq |g|$ pointwise, and so $f \in L^p$. We now show that the series $\sum f_j$ (i.e. the sequence of partial sums) converges to f with respect to the L^p norm. For this, note that

$$\left|f - \sum_{j=1}^{n} f_j\right|^p \leqslant \left(|f| + \sum_{j=1}^{n} |f_j|\right)^p \leqslant 2^p g^p.$$

So, by the Dominated Convergence Theorem (Theorem 22),

$$\left\| f - \sum_{j=1}^{n} f_j \right\|_p^p = \int \left| f - \sum_{j=1}^{n} f_j \right|^p \, \mathrm{d}\mu \longrightarrow 0.$$

REMARKS:

- It follows that a Cauchy sequence $\{f_i\}$ of functions in L^p converges to some f in $L^{p,3}$
- If $f_j \to f$ in the L^p norm then a subsequence $\{f_{j'}\}$ will converge pointwise a.e. to f. However, the original sequence $\{f_j\}$ needn't converge pointwise.
- The Riesz-Fischer Theorem suggests an analogy with the completion of the set \mathbb{Q} of rationals to create the set \mathbb{R} of real numbers: given a Borel measure μ on a topological space X, to what extent is the space $L^p(\mu)$ the completion of the space C(X) of continuous functions on X? This is not always the case, even when X is compact and $\mu(X) < \infty$ (implying continuous functions on X are bounded and μ -integrable). However, it is suitably true for "nice" Borel measures. We shall consider this in the next Handout.

³For a direct proof that Cauchy sequences in L^p converge, see §8.4 of An Introduction to Measure and Integration by I. Rana (2nd ed., AMS, 2002).

SOLUTIONS

(a) We want to show that if $f: \mathbb{R}^n \to \mathbb{R}$ is continuous then

$$\sup |f| = \operatorname{ess\,sup} |f|.$$

with respect to Lebesgue measure. Let $M = \sup |f|$ and $N = \operatorname{ess} \sup |f|$. Then

$$|f|^{-1}\left((M,\infty]\right) = \emptyset \quad \Longrightarrow \quad \mathscr{L}^n\left(f^{-1}\left((M,\infty]\right)\right) = 0 \quad \Longrightarrow \quad N \leqslant M \,.$$

Next, note that for any $\epsilon > 0$ there is an $x \in \mathbb{R}^n$ with $|f(x)| > M - \epsilon$.

But then, by continuity, $f > M - 2\epsilon$ in a whole open ball B around x. Clearly $\mathscr{L}^n(B) > 0$, and thus

$$\mathscr{L}^n\left(f^{-1}\left((M-2\epsilon,\infty]\right)\right) > 0 \quad \Longrightarrow \quad N \geqslant M - 2\epsilon.$$

Thus $M \leq N$, by the Thrilling ϵ -Lemma.

(b) This argument also makes clear how $ess \sup |f|$ may be strictly less than $\sup |f|$ for a general measure: the measure just needs to be zero where |f| is large. To take the extreme example, if μ is the zero measure then $ess \sup |f| = -\infty$ no matter what f is.

Given $f \in L^1$ and $g \in L^\infty$ we want to know when

(*)
$$\int |fg| \, \mathrm{d}\mu = \|f\|_1 \cdot \|g\|_{\infty}$$

Fixing $\epsilon > 0$, let

$$A_{\epsilon} = \{x : |f(x)| \ge \epsilon\} \cap \{x : |g(x)| \le ||g||_{\infty} - \epsilon\}.$$

If $\mu(A_{\epsilon}) = \delta > 0$ then clearly

$$\int |fg| = \int_{A_{\epsilon}} |fg| + \int_{X \sim A_{\epsilon}} |fg| \leqslant -\delta\epsilon^2 + \int_{A_{\epsilon}} |f| \cdot \|g\|_{\infty} + \int_{X \sim A_{\epsilon}} |f| \cdot \|g\|_{\infty} = \|f\|_1 \cdot \|g\|_{\infty}.$$

Thus, for equality in (*), we must have $\mu(A_{\epsilon}) = 0$ for every ϵ . It follows that for equality it is necessary that $|g| = ||g||_{\infty}$ a.e. on $\{x : f(x) \neq 0\}$. Clearly, this condition is also sufficient.

(a) For any $p < \infty$,

$$\int |f|^p \leqslant \int ||f||_{\infty}^p = \mu(X) ||f||_{\infty}^p$$

Taking p'th roots, and noting $\lim_{p\to\infty} (\mu(X))^{\frac{1}{p}} = 1$, we see $\limsup_{p\to\infty} \|f\|_p \leq \|f\|_{\infty}$. For the reverse inequality, suppose M is such that $|f| \geq M$ on a measurable $A \subseteq X$ with $\mu(A) > 0$. Then $\int |f|^p \geq \mu(A)M^p$. It follows that $\liminf_{p\to\infty} \|f\|_p \geq M$. But for any $\epsilon > 0$, we can find such an M with $M \geq \|f\|_{\infty} - \epsilon$. By the Thrilling ϵ -Lemma, $\liminf_{p\to\infty} \|f\|_p \geq \|f\|_{\infty}$, as desired.

(b) Next, consider $f(x) = \frac{1}{x}$ on $[1, \infty)$, with respect to Lebesgue measure. Then $f \in L^2$ but $f \notin L^1$. As well $||f||_{\infty} = 1$, but $\lim_{p \to \infty} ||f||_p = 0$.

With μ a measure on X, we want to show that $L^{\infty}(X)$ is complete, Let $\{f_j\}$ be a Cauchy sequence in L^{∞} . That is, for any $\epsilon > 0$ there is an N such

(*)
$$j,k \ge N \implies ||f_j - f_k||_{\infty} < \epsilon \implies |f_j(x) - f_k(x)| < \epsilon \text{ a.e. } x \in X$$

We first show that $\{f_j(x)\}\$ is a Cauchy sequence for a.e. $x \in X$. To do this, for $n \in \mathbb{N}$ let N_n be given by (*) with $\epsilon = \frac{1}{n}$:

(n)
$$j,k \ge N_n \implies |f_j(x) - f_k(x)| < \frac{1}{n} \text{ a.e. } x \in X.$$

For $j, k \ge N$, we then let A_{njk} be the null set of x for which (n) fails. Then

$$A = \bigcup_{\substack{n \in \mathbb{N} \\ j, k \ge n}} A_{njk}$$

is a null set, and $\{f_j(x)\}$ is a Cauchy sequence of real numbers for any $x \notin A$.

Thus, for fixed $x \notin A$, $\{f_j(x)\}$ converges to some $y \in \mathbb{R}$, and we define

$$f(x) = y = \lim_{j \to \infty} f_j(x)$$
.

To show $f_j \to f$ in L^{∞} , we can let $k \to \infty$ in (n). This gives

(n)
$$j \ge N_n \implies |f_j(x) - f(x)| \le \frac{1}{n}$$
 a.e. $x \in X$.

Thus

$$||f||_{\infty} \leq ||f - f_1||_{\infty} + ||f_1||_{\infty} \leq 1 + ||f_1||_{\infty} < \infty.$$

So $f \in L^{\infty}$, and we similarly have

$$\|f_j - f\|_{\infty} \to 0$$

⇒€	
()

