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Suppose µ is a measure on X. We define

L1(µ) = {f : f is µ-summable} ,

writing L1, if the context is clear. The superscript 1 suggests, correctly, that there will
be collections Lp for other p ∈ R∗. But let us first concentrate upon the collection of
summable functions. We first note that L1 is closed under addition (by Theorem 21) and
scalar multiplication, and thus L1 is a vector space. Also, if a function f is in L1 then so is
|f | (immediately, from the definition of

´
f). So, we can define a “norm”

�f�1 =
ˆ

|f | dµ .

We are interested here in f ∈ L1, but note that �f�1 is well-defined, possibly ∞, for any
measurable f .

In fact, � · �1 is not in general a norm. Clearly, �cf�1 = |c| · �f�1 for c ∈ R. And, the
triangle inequality follows from the triangle inequality on R, together with monotonicity of
the integral:

�f + g�1 =
ˆ

|f + g| �
ˆ

|f |+ |g| =
ˆ

|f |+
ˆ

|g| = �f�1 + �g�1 .

However, we may not have positivity: for many measures it is possible that �f�1 = 0 even
if f �= 0 (i.e. even if f is not the zero function). � · �1 on L1 is what is called a seminorm.
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So, technically, we don’t have a norm on L1, but the seminormness of � · �1 is pretty
trivial: if �f�1 = 0 then f must be 0 almost everywhere. To cope with the lack of positivity,
we recall the equivalence relation on measurable functions:

f ≡ g ⇐⇒ f = g a.e. .

Note that

(∗) f ≡ g =⇒ �f�1 = �g�1 ,

and thus we can define � · �1 on the set of equivalence classes of L1. Writing f̂ for the
equivalence class of f ∈ L1, we then define

�f̂�1 = �f�1 ,

with (∗) guaranteeing that the definition is independent of the class representative.

It is easy to check that we do now indeed have a norm.1 Technically, we should define
and work with this new space of equivalence classes. However, the general consensus is that
life is too short for that. So, we’ll stick to L1, and refer to � · �1 as a norm on L1, keeping
the equivalences in the back of our minds.2

We can now think of L1 as a normed space. Our main theorem here, Theorem 31, is
that L1 is a Banach space: L1 is complete with respect to the associated metric (in truth,
pseudometric)

d(f, g) = �f − g�1 .
Before proving the completeness of L1, we first consider the Lp spaces for other p. As well
as the norm we have defined above, it is very natural to consider the “inner product”

�f, g� =
ˆ

fg dµ .

Modulo the same positivity considerations, this is indeed an inner product, but an inner
product on what space? Note that even if f and g are summable, �f, g� may be infinite or
undefined: for example, let µ = L on (0, 1) and take f(x) = g(x) = 1√

x . However, we do
have

|fg| � 1
2f

2 + 1
2g

2 .

Thus, if both f 2 and g2 are summable then �f, g� will be well-defined and finite. This leads
us to define

L2(µ) =

�
f :

ˆ
f 2 dµ < ∞

�
.

1
This is a standard construction, which works for any seminorm.

2
It shouldn’t be imagined that the representative we choose is always unimportant. For example, the

Weird function W = χQ∩[0,1] from Handout 1 was introduced exactly because of its failure to be Riemann

integrable. However, W is equivalent to the zero function, which is trivially Riemann integrable. The moral

is, within the confines of measure theory our choice of representative is unimportant; but, as soon as we wish

to consider non-measure-theoretic properties, we may need to specify the representative function.
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Notice that L2 is closed under addition, and is thus a vector space, since

(f + g)2 = f 2 + 2fg + g2 � 2f 2 + 2g2 .

Then �·, ·� is an inner product on the space L2, with the associated (semi)norm

�f�2 =
�
�f, f� =

�ˆ
|f |2

� 1
2

.

Note that �f�2 is well-defined for any measurable f . In Theorem 31 we prove that L2 is
complete, and thus that L2 is a Hilbert space.

In accord with L1 and L2, we now consider 1 � p < ∞. We define

Lp(µ) =

�
f :

ˆ
|f |p dµ < ∞

�
1 � p < ∞ ,

and if f ∈ Lp, we say that f is p-summable. Again, Lp is a vector space, since

|f + g|p � (2max(|f |, |g|))p = 2p max (|f |p, |g|p) � 2p (|f |p + |g|p) .
We define the associated “seminorm”:

�f�p =
�ˆ

|f |p
� 1

p

f measurable.

The definition is consistent with the cases p = 1 and p = 2, but it is not at all obvious that
� · �p defines a seminorm. It is easy to see that �cf�p = |c| · �f�p for c ∈ R, but the triangle
inequality takes significantly more work: see Theorem 30.

Before getting down to work, there is one more Lp space to define, for p = ∞. Here the
idea is to capture the space of bounded measurable functions, and to give them a sup norm.
However, since we want null sets to be irrelevant, the straight-forward definitions are not
appropriate. Instead, for f :X→R∗,we consider those M ∈ R∗ for which

µ(f−1((M,∞])) = 0 .

Of course, M = ∞ satisfies this condition, and is easy to check that the set of such M
forms a closed interval of R∗. Thus we can define the the essential supremum of f to be the
smallest such M :

(†) ess sup f = min{M ∈ R∗ : µ
�
f−1 ((M,∞])

�
= 0} .

Note that the use of open intervals permits us to write min rather than inf in the definition.
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We now define
�
�f�∞ = ess sup |f | ,

L∞(µ) = {f : f is µ-measurable and �f�∞ < ∞} .

Note that if f :Rn→R is continuous then, with respect to Lebesgue measure,

�f�∞ = ess sup |f | = sup |f | (wrt L n).

However, with respect to other measures this may not be the case.

It is easy to see that L∞ is a vector space, and that �cf�∞ = |c| · �f�∞ for c ∈ R. To
prove the triangle inequality, consider f, g ∈ L∞ and let M = �f�∞ and N = �g�∞. Then

{x : |f |(x) + |g|(x) > M +N} ⊆ {x : |f |(x) > M} ∪ {x : |g|(x) > N}

=⇒ {x : |f(x) + g(x)| > M +N} ⊆ |f |−1 ((M,∞]) ∪ |g|−1 ((N,∞])

=⇒ µ
�
(|f + g|)−1((M +N,∞]

�
= 0

=⇒ �f + g�∞ � M +N = �f�∞ + �g�∞ .

It is also easy to check that

f ≡ g =⇒ �f�∞ = �g�∞ .

Thus � · �∞ is a well-defined seminorm on L∞, and � · � ignores null sets. And, as for Lp for
1 � p < ∞, as part of Theorem 31 we shall prove that L∞ is a Banach space.

Before proving the triangle inequality for Lp, we make a couple of quick observations:

• If fj → f uniformly off of a null set, then it easily follows that �fj − f�p → 0. More
generally, with appropriate hypotheses the convergence theorems of Handout 5 can
applied to show �fj − f�p→ 0. See the proof of Theorem 31 below.

• Let µ0 be counting measure on N. Then the spaces Lp = lp are exactly the well-known
sequence spaces.

We now begin the proof of the triangle inequality for general Lp. As part of the proof, we
associate Lp and Lq, where

1

p
+

1

q
= 1

In what follows, we shall always assume that p and q are thus related. Note the particular
cases p = q = 2, and p = 1, q = ∞.
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LEMMA 28 (Young’s Inequality): For any a, b � 0, and 1 < p, q < ∞, we have

ab � ap

p
+

bq

q
,

with equality iff ap = bq.

PROOF: Since the function log is concave, the graph of log lies above the straight line
connecting the straight-line segment l connecting any two points on the graph. Writing

z = (1− t)x+ ty 0 � t � 1 ,

for a point between x and y, we thus have

log(z) � l(z)

=⇒ log((1− t)x+ ty) � (1− t) log x+ t log y .

Now set x = ap, y = bq, and t = 1
q (implying 1− t = 1

p). Then

log
�

ap

p + bq

q

�
� 1

p log (a
p) + 1

q log (b
q) = log(ab) .

Taking exponentials, and noting exp is increasing, we obtain the desired result. We obtain
a strict inequality unless z = x = y, that is unless ap = bq.

THEOREM 29 (Hölder’s Inequality): Suppose µ is a measure on X, and suppose
that f and g are measurable functions on X. Then

(†)
ˆ

|fg| dµ � �f�p · �g�q 1 � p, q � ∞.

In particular, if f ∈ Lp and g ∈ Lq then fg ∈ L1.
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PROOF: We consider 1 < p, q < ∞ with 0 < �f�p, �g�q < ∞, the other cases being trivial.
Now let

f̄ =
f

�f�p
ḡ =

g

�g�q
.

Then, by Lemma 28,ˆ ��f̄ ḡ
�� ∗
�

ˆ
1
p |f̄ |

p + 1
q |ḡ|

q =
1

p�f�pp

ˆ
|f |p +

1

q�g�qq

ˆ
|g|q =

1

p
+

1

q
= 1 .

But then clearly
´ ��f̄ ḡ

�� = 1
�f�p�g�q

´
|fg|, and (†) follows.

REMARKS:

• Suppose 1 < p, q < ∞ and the RHS of (†) is finite. Then Hölder’s Inequality is an
equality iff the use of Lemma 28 in the proof at (∗) is an equality a.e.. That is, we
require

|f |p

�f�pp
=

|g|q

�g�qq
a.e. .

Thus, we have equality iff there is a c ∈ R such that |f |p = c|g|q a.e..

• 38 Suppose p = 1, q = ∞ and the RHS of (†) is finite. Then Hölder’s Inequality is
an equality iff |g| = �g�∞ a.e. on {x : f(x) �= 0}.

• Suppose µ(X) < ∞. If f is an integrable function, we define the average of f :

 
f dµ =

1
µ(X)

ˆ
f dµ .

Then a consequence of Hölder’s Inequality is

1 � p < r < ∞ =⇒
� 

|f |p
� 1

p

�
� 

|f |r
� 1

r

.

In particular, if µ(X) = 1 then �f�p � �f�r.

• 40 In general, if µ(X) < ∞ then

(♣)






f ∈ Lr =⇒ f ∈ Lp p � r ,

�f�∞ = lim
p→∞

�f�p .

However, if µ(X) = ∞ then neither conclusion of (♣) is true in general.
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We can now give the proof of the triangle inequality on Lp, establishing that � · �p is a
(semi)norm on Lp, followed by the proof of the completeness of Lp.

THEOREM 30 (Minkowski’s Inequality): Suppose µ is a measure on X, and suppose
f, g ∈ Lp, 1 � p � ∞. Then

(∗) �f + g�p � �f�p + �g�p .

PROOF: The cases p = 1 and p = ∞ have been proved above, so we assume 1 < p < ∞.
Then

�f + g�pp =
ˆ

|f + g|p =
ˆ

|f + g||f + g|p−1 �
ˆ

|f ||f + g|p−1 +

ˆ
|g||f + g|p−1 .

We will apply Hölder’s Inequality on each of these integrals. In preparation, we first calculate

� |f + g|p−1�q =
�ˆ

|f + g|q(p−1)

� 1
q

=

�ˆ
|f + g|p

�1− 1
p

= �f + g�p−1
p ,

where we have used the equation 1
p +

1
q = 1 twice in the second last step. So, by Hölder’s

Inequality,
�f + g�pp � �f�p · �f + g�p−1

p + �g�p · �f + g�p−1
p .

If �f + g�p = 0 then (∗) is trivial. Otherwise, we divide through by �f + g�p−1 to give the
desired result.

THEOREM 31 (Riesz-Fischer Theorem): Suppose µ is a measure on X, and suppose
1 � p � ∞. Then Lp(µ) is complete with respect to the norm � · �p. Thus each Lp is a
Banach space, and L2 is a Hilbert space.

PROOF: 41 The case p = ∞ is easier, and is left as an exercise.

We use the standard characterisation, that a normed space is complete if and only if an
absolutely convergent sequence is convergent. So, we consider a sequence {fj} in Lp for
which

�
�fj�p = S < ∞. Then we want to show

�
fj converges in Lp to some function f .

By the triangle inequality,
�����

n�

j=1

|fj|

�����
p

�
n�

j=1

�fj�p � S < ∞ .
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Then, by Monotone Convergence Theorem (Theorem 19),

ˆ � ∞�

j=1

|fj|
�p

dµ = lim
n→∞

ˆ �
n�

j=1

|fj|
�p

dµ � Sp < ∞ .

It follows that g =
�∞

j=1 |fj| ∈ Lp, and in particular that g is finite a.e.. Then, since any
absolutely convergent series of real numbers is convergent, for a.e. x we can define pointwise

f(x) =
∞�

j=1

fj(x) .

It is clear that |f | � |g| pointwise, and so f ∈ Lp. We now show that the series
�

fj (i.e.
the sequence of partial sums) converges to f with respect to the Lp norm. For this, note
that �����f −

n�

j=1

fj

�����

p

�
�
|f |+

n�

j=1

|fj|
�p

� 2pgp .

So, by the Dominated Convergence Theorem (Theorem 22),

�����f −
n�

j=1

fj

�����

p

p

=

ˆ �����f −
n�

j=1

fj

�����

p

dµ −→ 0 .

REMARKS:

• It follows that a Cauchy sequence {fj} of functions in Lp converges to some f in Lp.3

• 42 If fj → f in the Lp norm then a subsequence {fj�} will converge pointwise a.e.

to f . However, the original sequence {fj} needn’t converge pointwise.

• The Riesz-Fischer Theorem suggests an analogy with the completion of the set Q of
rationals to create the set R of real numbers: given a Borel measure µ on a topological
space X, to what extent is the space Lp(µ) the completion of the space C(X) of
continuous functions on X? This is not always the case, even when X is compact
and µ(X) < ∞ (implying continuous functions on X are bounded and µ-integrable).
However, it is suitably true for “nice” Borel measures. We shall consider this in the
next Handout.

3
For a direct proof that Cauchy sequences in Lp

converge, see §8.4 of An Introduction to Measure and
Integration by I. Rana (2nd ed., AMS, 2002).
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SOLUTIONS

(a) We want to show that if f :Rn → R is continuous then

sup |f | = ess sup |f | .

with respect to Lebesgue measure. Let M = sup |f | and N = ess sup |f |. Then

|f |−1 ((M,∞]) = ∅ =⇒ L n
�
f−1 ((M,∞])

�
= 0 =⇒ N � M .

Next, note that for any � > 0 there is an x ∈ Rn with |f(x)| > M − �.

M−2

N

Rn

|f|  

M

x
(   )  

B

But then, by continuity, f > M − 2� in a whole open ball B around x. Clearly
L n(B) > 0, and thus

L n
�
f−1 ((M − 2�,∞])

�
> 0 =⇒ N � M − 2� .

Thus M � N , by the Thrilling �-Lemma.

(b) This argument also makes clear how ess sup |f | may be strictly less than sup |f | for a
general measure: the measure just needs to be zero where |f | is large. To take the
extreme example, if µ is the zero measure then ess sup |f | = −∞ no matter what f is.
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38 Given f ∈ L1 and g ∈ L∞ we want to know when

(∗)
ˆ

|fg| dµ = �f�1 · �g�∞ .

Fixing � > 0, let
A� = {x : |f(x)| � �} ∩ {x : |g(x)| � �g�∞ − �} .

If µ(A�) = δ > 0 then clearly

ˆ
|fg| =

ˆ
A�

|fg|+
ˆ

X∼A�

|fg| � −δ�2 +

ˆ
A�

|f | · �g�∞ +

ˆ
X∼A�

|f | · �g�∞ = �f�1 · �g�∞ .

Thus, for equality in (∗), we must have µ(A�) = 0 for every �. It follows that for equality it
is necessary that |g| = �g�∞ a.e. on {x : f(x) �= 0}. Clearly, this condition is also sufficient.

(a) For any p < ∞, ˆ
|f |p �

ˆ
�f�p∞ = µ(X)�f�p∞ .

Taking p’th roots, and noting lim
p→∞

(µ(X))
1
p = 1, we see lim sup

p→∞
�f�p � �f�∞. For

the reverse inequality, suppose M is such that |f | � M on a measurable A ⊆ X
with µ(A) > 0. Then

´
|f |p � µ(A)Mp. It follows that lim inf

p→∞
�f�p � M . But for

any � > 0, we can find such an M with M � �f�∞ − �. By the Thrilling �-Lemma,
lim inf
p→∞

�f�p � �f�∞, as desired.

(b) Next, consider f(x) = 1
x on [1,∞), with respect to Lebesgue measure. Then f ∈ L2 but

f /∈ L1. As well �f�∞ = 1, but lim
p→∞

�f�p = 0.
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41 With µ a measure on X, we want to show that L∞(X) is complete, Let {fj} be a
Cauchy sequence in L∞. That is, for any � > 0 there is an N such

(∗) j, k � N =⇒ �fj − fk�∞ < � =⇒ |fj(x)− fk(x)| < � a.e. x ∈ X.

We first show that {fj(x)} is a Cauchy sequence for a.e. x ∈ X. To do this, for n ∈ N let
Nn be given by (∗) with � = 1

n :

(n) j, k � Nn =⇒ |fj(x)− fk(x)| <
1

n
a.e. x ∈ X.

For j, k � N , we then let Anjk be the null set of x for which (n) fails. Then

A =
�

n ∈ N
j, k � n

Anjk

is a null set, and {fj(x)} is a Cauchy sequence of real numbers for any x /∈ A.

Thus, for fixed x /∈ A, {fj(x)} converges to some y ∈ R, and we define

f(x) = y = lim
j→∞

fj(x) .

To show fj→f in L∞, we can let k→∞ in (n). This gives

(n) j � Nn =⇒ |fj(x)− f(x)| � 1

n
a.e. x ∈ X.

Thus
�f�∞ � �f − f1�∞ + �f1�∞ � 1 + �f1�∞ < ∞ .

So f ∈ L∞, and we similarly have

�fj − f�∞ → 0 .
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